Abstract
Encysted embryos of Artemia franciscana cease development and enter diapause, a state of metabolic suppression and enhanced stress tolerance. The development of diapause-destined Artemia embryos is characterized by the coordinated synthesis of the small heat shock proteins (sHsps) p26, ArHsp21 and ArHsp22, with the latter being stress inducible in adults. The amounts of sHsp mRNA and protein varied in Artemia cysts, suggesting transcriptional and translational regulation. By contrast to p26, knockdown of ArHsp21 by RNA interference had no effect on embryo development. ArHsp21 provided limited protection against stressors such as desiccation and freezing but not heat. ArHsp21 may have a non-essential or unidentified role in cysts. Injection of Artemia adults with amounts of ArHsp22 double-stranded RNA less than those used for other sHsps killed females and males, curtailing the analysis of ArHsp22 function in developing embryos and cysts. The results indicate that diapause-destined Artemia embryos synthesize varying amounts of sHsps as a result of differential gene expression and mRNA translation and also suggest that these sHsps have distinctive functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.