Abstract

Epithelial cells were isolated from mouse endometrium and cultured on two types of extracellular matrix, namely, rat-tail collagen (type I) gels and basement membrane extract (BME) derived from the Engelbreth-Holm-Swarm murine sarcoma. Cell attachment in serum-free medium during the initial 24 h after seeding was approximately twofold higher on BME compared with collagen type I. Addition of serum to the medium enhanced cell attachment on both matrices. On both collagen and BME, uterine cells grew as smooth-bordered colonies, and within a week of culture the cells became cuboidal to columnar in shape. Electron microscopy revealed the presence of apical microvilli associated with a glycocalyx, junctional complexes, tonofilaments, short strands of undilated endoplasmic reticulum, Golgi complex, and lipid droplets. However, cells on BME showed a higher degree of differentiation as assessed by occasional formation of small patches of basement membranelike structure subjacent to the flattened basal surface and formation of glandlike structures within the matrix. Proliferation of these cells as measured by radioactive thymidine incorporation into DNA was increased threefold by addition of epidermal growth factor (EGF) and insulin to the medium, but was not changed by 17 beta-estradiol. The expression of progesterone receptors by uterine epithelial cells grown on both matrices was doubled by addition of EGF and estradiol to the medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.