Abstract

TFIID, the general transcription factor that binds TATA promoter elements, is highly conserved throughout the eukaryotic kingdom. TFIIDs from different organisms contain C-terminal core domains that are at least 80% identical and display similar biochemical properties. Despite these similarities, yeast cells containing human TFIID instead of the endogenous yeast protein grow extremely poorly. Surprisingly, this functional distinction reflects differences in the core domains, not the divergent N-terminal regions. The N-terminal region is unimportant for the essential function(s) of yeast TFIID because expression of the core domain permits efficient cell growth. Analysis of yeast-human hybrid TFIIDs indicates that several regions within the conserved core account for the phenotypic difference, with some regions being more important than others. This species specificity might reflect differences in DNA-binding properties and/or interactions with activator proteins or other components of the RNA polymerase II transcription machinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.