Abstract

The orb-web weaving spiders produce a broad range of high performance structural fibers (i.e. silks) with mechanical properties that are superbly matched to their function. Our interest in these materials stems both from an interest in the biology of the spiders and the design of their webs and also from a desire to discover principles of mechanical design of protein-based structural materials that can guide the development of novel bio-engineered materials. All spiders produce silks, but the orb-web weaving spiders are unique in their ability to produce seven different silks, each from distinct gland/spinneret complexes. Considering the wide diversity of spider species, there is likely to be an enormous range of material properties available in spider silk. However, at present, we only have information on two species of spiders, and only two of their seven silks have been studied in any detail. These are: (1) the silk produced by the major ampullate gland, which forms the safety-line or dragline of the spider and also is used to form the frame of its orb-web, and (2) the viscid silk produced by the flagelliform gland, which forms the glue-covered catching spiral of the web. In this paper we describe several aspects of the mechanical design of the dragline and viscid silks produced by the spider Araneus diadematus.© (1996) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call