Abstract

Botulinum neurotoxin serotype A (BoNT/A) is a widely used cosmetic agent that also has diverse therapeutic applications; however, adverse antidrug immune responses and associated loss of efficacy have been reported in clinical uses. Here, we describe computational design and ultrahigh-throughput screening of a massive BoNT/A light-chain (BoNT/A-LC) library optimized for reduced T cell epitope content and thereby dampened immunogenicity. We developed a functional assay based on bacterial co-expression of BoNT/A-LC library members with a Förster resonance energy transfer (FRET) sensor for BoNT/A-LC enzymatic activity, and we employed high-speed fluorescence-activated cell sorting (FACS) to identify numerous computationally designed variants having wild-type-like enzyme kinetics. Many of these variants exhibited decreased immunogenicity in humanized HLA transgenic mice and manifested in vivo paralytic activity when incorporated into full-length toxin. One variant achieved near-wild-type paralytic potency and a 300% reduction in antidrug antibody response in vivo. Thus, we have achieved a striking level of BoNT/A-LC functional deimmunization by combining computational library design and ultrahigh-throughput screening. This strategy holds promise for deimmunizing other biologics with complex superstructures and mechanisms of action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.