Abstract

The unreasonable accumulation of coal gangue in mining areas has caused serious resource waste and environmental pollution. The functional utilization of coal gangue with high added value has become the key to solving the previous problem. Coal gangue has inherent advantages such as large specific surface areas and rich active components, giving rise to an excellent precursor of electrode material in electrochemical energy storage devices. Herein, we, firstly, fabricated an amorphous SiCX/SiOX electrocatalyst with an abundant oxygen vacancy by acid–alkali activation derived from coal gangue for advanced Li-O2 batteries. The in-depth experimental results coupled with an in situ characterization analysis revealed that the amorphous SiCX/SiOX layer with abundant functional groups and oxygen vacancies on the surface of the activated gangue was conducive to promote structural stability and to improve the formation/decomposition efficiency of discharged products (Li2O2). Therefore, the LOBs based on the activated coal gangue electrocatalyst delivered a low overpotential of 1.12 V, high discharge capacity of 9156 mAh g−1, and an improved cyclic stability (more than 350 h). This work can provide a new approach for the development of new functions of coal gangue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.