Abstract

p27(Kip1) contributes to cell-cycle regulation by inhibiting cyclin-dependent kinase (Cdk) activity. The p27 Cdk-inhibition domain has an ordered conformation comprising an alpha-helix, a 3(10) helix, and beta-structure when bound to cyclin A-Cdk2. In contrast, the unbound p27 Cdk-inhibition domain is intrinsically disordered (natively unfolded) as shown by circular dichroism spectroscopy, lack of chemical-shift dispersion, and negative heteronuclear nuclear Overhauser effects. The intrinsic disorder is not due to the excision of the Cdk-inhibition domain from p27, since circular dichroism spectra of the full-length protein are also indicative of a largely unfolded protein. Both the inhibition domain and full-length p27 are active as cyclin A-Cdk2 inhibitors. Using circular dichroism and proline mutagenesis, we demonstrate that the unbound p27 Cdk-inhibition domain is not completely unfolded. The domain contains marginally stable helical structure that presages the alpha-helix, but not the 3(10) helix, adopted upon binding cyclin A-Cdk2. Increasing or reducing the stability of the partially preformed alpha-helix in the isolated p27 domain with alanine or proline substitutions did not affect formation of the p27-inhibited cyclin A-Cdk2 complex in energetic terms. However, stabilization of the helix with alanine hindered kinetically the formation of the inhibited complex, suggesting that p27 derives a kinetic advantage from intrinsic structural disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.