Abstract
Dysfunction of cerebellar vermis contributes to gait abnormalities in multiple conditions and may play a key role in gait impairment in Parkinson's disease (PD). The purpose of this study was to investigate whether altered resting-state functional connectivity of the vermis relates to subsequent impairment of specific domains of gait in PD. We conducted morphometric and resting-state functional connectivity MRI analyses contrasting 45 PD and 32 age-matched healthy participants. Quantitative gait measures were acquired with a GAITRite walkway at varying intervals after functional connectivity data acquisition. At baseline, PD participants had significantly altered functional connectivity between vermis and sensorimotor cortex compared with controls. Altered vermal functional connectivity with bilateral paracentral lobules correlated with subsequent measures of variability in stride length, step time, and single support time after controlling for confounding variables including the interval between imaging and gait measures. Similarly, altered functional connectivity between vermis and left sensorimotor cortex correlated with mean stride length and its variability. Vermis volume did not relate to any gait measure. PD participants did not differ from controls in vermis volume or cortical thickness at the site of significant regional clusters. Only altered lobule V:sensorimotor cortex functional connectivity correlated with subsequent gait measures in exploratory analyses involving all the other cerebellar lobules. These results demonstrate that abnormal vermal functional connectivity with sensorimotor cortex, in the absence of relevant vermal or cortical atrophy, correlates with subsequent gait impairment in PD. Our data reflect the potential of vermal functional connectivity as a novel imaging biomarker of gait impairment in PD. © 2021 International Parkinson and Movement Disorder Society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.