Abstract
The aim of this study was to investigate the central mechanism underlying the putative beneficial effects of electroacupuncture (EA) on learning and memory ability of rats with ischemic stroke-induced cognitive deficits by resting-state functional magnetic resonance imaging (fMRI). A rat model of middle cerebral artery occlusion (MCAO)-induced cognitive deficit (MICD) was established. Rats were randomly assigned into a sham-operated control group (SC group, n = 12), untreated MICD model group (MICD group, n = 12), and MICD group receiving EA treatment at GV20 and GV24 (MICD + EA group, n = 12). Compared to the MICD group, rats in the MICD + EA group receiving EA at GV20 and GV24 exhibited significantly shortened escape latency times and crossed the position of the platform a significantly increased number of times during the Morris water maze test on the 14th day after EA, which suggested EA could significantly improve spatial learning and memory ability. Furthermore, compared to the MICD group, functional connectivity of the left retrosplenial cortex (RSC) with the left hippocampus, left RSC, right RSC, left cingulate gyrus, right cingulate gyrus, right tegmentum of midbrain, and right visual cortex was increased in the MICD + EA group; the MICD group showed decreased functional connectivity of the left RSC with the left hippocampus, right hippocampus, left RSC, right RSC, right amygdaloid body, left visual cortex, and right visual cortex. These findings suggest that EA at GV20 and GV24 might improve the learning and memory ability of MICD rats by increasing the functional connectivity between the RSC and hippocampus, cingulate gyrus and midbrain, which is encouraging for the potential treatment for cognitive impairment secondary to ischemia stroke.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.