Abstract

BackgroundThe amygdala is vital in processing psychological stress and predicting vulnerability or resilience to stress-related disorders. This study aimed to build the link between functional magnetic resonance imaging data obtained before the stress event and the subsequent stress-related depressive symptoms. MethodsNeuroimaging data obtained before the coronavirus disease 2019 pandemic from 39 patients with major depressive disorder (MDD) and 61 health controls (HCs) were used in this study. The participants were divided retrospectively into four groups in accordance with the severity of depressive symptoms during the pandemic: remitted patients, non-remitted patients, depressed HCs (HCd) and non-depressed HCs (HCnd). Seed-based resting-state functional connectivity (rsFC) analyses of the amygdala and its subregions, including the centromedial (CM), the basolateral and the superficial (SF), were performed. ResultsVulnerability to depression was suggested by decreased rsFC between the left CM amygdala and the bilateral lingual gyrus in the HCd group compared with the HCnd group, and decreased rsFC of the left CM or right SF amygdala with the precuneus and the postcentral gyrus in the HCd group compared with patients with MDD. No evidence supported the rsFC of the amygdala or its subregions as a biomarker for the resilience of patients with MDD to stress under antidepressant treatment. LimitationsSmaller sample size and no longitudinal neuroimaging data. ConclusionsOur findings suggested that the rsFC of amygdala subregions may represent a neurobiological marker of vulnerability to depression following stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call