Abstract

Music producers, whether original composers or performers, vary in their ability to acquire and faithfully transmit music. This form of variation may serve as a mechanism for the emergence of new traits in musical systems. In this study, we aim to investigate whether individual differences in the social learning and transmission of music relate to intrinsic neural dynamics of auditory processing systems. We combined auditory and resting-state functional magnetic resonance imaging (fMRI) with an interactive laboratory model of cultural transmission, the signaling game, in an experiment with a large cohort of participants (N=51). We found that the degree of interhemispheric rs-FC within fronto-temporal auditory networks predicts-weeks after scanning-learning, transmission, and structural modification of an artificial tone system. Our study introduces neuroimaging in cultural transmission research and points to specific neural auditory processing mechanisms that constrain and drive variation in the cultural transmission and regularization of musical systems.

Highlights

  • Human brain function shows substantial variability across individuals (Bergfeldt, 2016)

  • In previous work (Lumaca and Baggio, 2016), we showed that individual players’ ability to learn and transmit an artificial tone system in signaling games, and the extent to which structural aspects of the codes are reorganized by players, can be predicted based on the latency of a neurophysiological marker of auditory processing in participants: the mismatch negativity (MMN) (Naatanen et al, 1978)

  • Asymmetry in Game two was negative and significantly different from zero: there was a tendency for participants to maintain their code and for receivers to adjust more frequently their mappings during coordination than senders did

Read more

Summary

Introduction

Human brain function shows substantial variability across individuals (Bergfeldt, 2016). It has been argued that symbolic systems, including language and music, evolve while they are being transmitted across individuals and generations, partly adapting to properties of brain systems of learners and users (Deacon, 1997; Christiansen and Chater, 2008). This view has found support in laboratory experiments on the cultural transmission of language and music (Kirby et al, 2008; Ravignani et al, 2016; Lumaca and Baggio, 2017). No study has addressed this question using neuroimaging techniques

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.