Abstract

There is considerable interest in the long-term brain health of retired contact and collision sport athletes; however, little is known about possible underlying changes in functional brain connectivity in this group. We evaluated whole-brain functional connectivity patterns using multi-voxel pattern analysis (MVPA) to determine whether alterations in functional connectivity distinguish retired professional athletes from a matched group of healthy community control subjects. Thirty-two retired athletes with a history of multiple self-reported sport-related concussions and 36 healthy community control subjects who were similar in age and education, completed functional magnetic resonance imaging. We identified brain regions with abnormal functional connectivity patterns using whole-brain MVPA as implemented in the Conn toolbox. First-level MVPA was performed using 64 principal component analysis (PCA) components. Second-level F test was performed using the first three MVPA components for retired athletes > controls group contrast. Post hoc seed-to-voxel analyses using the MVPA cluster results as seeds were performed to characterize functional connectivity abnormalities from brain regions identified by MVPA. MVPA revealed one cluster of abnormal functional connectivity located in cerebellar lobule V. This region of lobule V corresponded to the ventral attention network. Post hoc seed-to-voxel analysis using the cerebellar MVPA cluster as a seed revealed multiple areas of cerebral cortical hyper-connectivity and hypo-connectivity in retired athletes when compared with controls. This initial report suggests that cerebellar dysfunction might be present and clinically important in some retired athletes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call