Abstract
AimApproximately one‐third of patients with major depressive disorder develop treatment‐resistant depression. One‐third of patients with treatment‐resistant depression demonstrate resistance to ketamine, which is a novel antidepressant effective for this disorder. The objective of this study was to examine the utility of resting‐state functional magnetic resonance imaging for the prediction of treatment response to ketamine in treatment‐resistant depression.MethodsAn exploratory seed‐based resting‐state functional magnetic resonance imaging analysis was performed to examine baseline resting‐state functional connectivity differences between ketamine responders and nonresponders before treatment with multiple intravenous ketamine infusions.ResultsFifteen patients with treatment‐resistant depression received multiple intravenous subanesthetic (0.5 mg/kg/40 minutes) ketamine infusions, and nine were identified as responders. The exploratory resting‐state functional magnetic resonance imaging analysis identified a cluster of significant baseline resting‐state functional connectivity differences associating ketamine response between the amygdala and subgenual anterior cingulate gyrus in the right hemisphere. Using anatomical region of interest analysis of the resting‐state functional connectivity, ketamine response was predicted with 88.9% sensitivity and 100% specificity. The resting‐state functional connectivity of significant group differences between responders and nonresponders retained throughout the treatment were considered a trait‐like feature of heterogeneity in treatment‐resistant depression.ConclusionThis study suggests the possible clinical utility of resting‐state functional magnetic resonance imaging for predicting the antidepressant effects of ketamine in treatment‐resistant depression patients and implicated resting‐state functional connectivity alterations to determine the trait‐like pathophysiology underlying treatment response heterogeneity in treatment‐resistant depression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.