Abstract
The most common surgically treatable epilepsy syndrome is mesial temporal lobe epilepsy (mTLE). Preoperative noninvasive lateralization of mTLE is challenging in part due to rapid contralateral seizure spread. Abnormal connections in both the mesial temporal lobe and resting-state networks have been described in mTLE, but it is unclear if connectivity between these networks may aid in lateralization. In 52 patients with left mTLE (LmTLE) or right mTLE (RmTLE) and 52 matched control subjects, the authors acquired 20 minutes of resting-state functional MRI (fMRI) and evaluated functional connectivity of bilateral hippocampi and amygdalae with selected resting-state networks. They used Pearson correlation, network-based statistic, and dynamic causal modeling. Also, to evaluate the clinical utility of a resting-state connectivity model in lateralizing unilateral presurgical mTLE patients, they used receiver operating characteristic curve analysis. RmTLE patients demonstrated decreased nondirected connectivity between the right hippocampus and default mode network compared with LmTLE patients and control subjects. Network-based statistic analysis revealed that the network with most decreased connectivity that distinguished LmTLE from RmTLE patients included the right hippocampus and amygdala, right lateral orbitofrontal cortices, and bilateral inferior parietal lobules, precuneus, and medial orbitofrontal cortices. Dynamic causal modeling analysis revealed that cross-hemispheric connectivity between hippocampi and amygdalae was predominantly inward toward the epileptogenic side. A regression model incorporating these connectivity patterns was used to accurately lateralize mTLE patients with an area under the receiver operating characteristic curve of 0.87. Evaluating fMRI connectivity between mesial temporal structures and default mode network may aid in mTLE lateralization, reduce need for intracranial monitoring, and guide surgical planning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.