Abstract

Motor feedback usually engages distinct sensory and cognitive processes based on different feedback conditions, e.g., the real and sham feedbacks. It was thought that these processes may rely on the functional connectivity among the brain networks. However, it remains unclear whether there is a difference in the network connectivity between the two feedback conditions. To address this issue, we carried out a functional magnetic resonance imaging (fMRI) study by employing a new paradigm, i.e., continuous feedback (8min) of finger force. Using independent component analysis and functional connectivity analysis, we found that as compared with the sham feedback, the real feedback recruited stronger negative connectivity between the executive network (EN) and the posterior default mode network (pDMN). More intriguingly, the left frontal parietal network (lFPN) exhibits positive connectivity with the pDMN in the real feedback while in the sham feedback, the lFPN shows connectivity with the EN. These results suggest that the connectivity among EN, pDMN, lFPN could differ depending on the real and sham feedbacks, and the lFPN may balance the competition between the pDMN and EN, thus supporting the sensory and cognitive processes of the motor feedback.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.