Abstract

The principles of operation (dynamic characteristics) of electromagnetic devices are discussed using a threephase multifunctional actuator as an example, whose major limitations are associated with the magnetic field nonlinearity and control over the magnetic forces affecting the moving element. The investigation is carried out using the methods of physico-mathematical modeling and a full-scale experiment. A physico-mathematical model is proposed, which is based on acceptable approximations and simplifications, the replacement of a nonlinear (but periodic) magnetic field in a quasi-stationary state by a harmonic magnetic field being the most important among them. The magnetic permeability in every cell of the discretization grid is assumed to be constant and corresponds to the local magnetic flux density. The features and characteristics obtained through this modeling are quite consistent with the observed behavior and measured values. It is shown that the dependence of friction coefficient on its velocity exhibits a hysteresis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.