Abstract
The umuDC operons of Escherichia coli and Salmonella typhimurium and the analogous plasmid operons mucAB and impCAB have been previously characterized in terms of their roles in DNA repair and induced mutagenesis by radiation and many chemicals. The interrelationships of these mutagenic DNA repair operons were examined in vivo in functional tests of interchangeability of operon subunits in conferring UV resistance and UV mutability phenotypes to wild-type S. typhimurium and umu mutants of E. coli. This approach was combined with DNA and protein sequence comparisons between the four operons and a fifth operon, samAB, from the S. typhimurium LT2 cryptic plasmid. Components of the E. coli and S. typhimurium umu operons were reciprocally interchangeable whereas impCA and mucA could not function with umuC in either of these species. mucA and impB could also combine to give a mutagenic response to UV. These active combinations were associated with higher degrees of conservation of protein sequence than in other heterologous gene combinations and related to specific regions of sequence that may specify subunit interactions. The dominance of the E. coli umuD44 mutation over umuD was revealed in both wild-type E. coli and S. typhimurium and also demonstrated against impCAB. Finally interspecies transfer showed that the apparently poor activity of the S. typhimurium umuD gene in situ is not the result of an inherent defect in umuD but is due to the simultaneous presence of the S. typhimurium umuC sequence. It is suggested that the limitation of umuD activity by umuC in S. typhimurium is the basis of the poor induced mutability of this organism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.