Abstract
Palladin is an actin binding protein that is specifically upregulated in metastatic cancer cells but also colocalizes with actin stress fibers in normal cells and is critical for embryonic development as well as wound healing. Of nine isoforms present in humans, only the 90 kDa isoform of palladin, comprising three immunoglobulin (Ig) domains and one proline-rich region, is ubiquitously expressed. Previous work has established that the Ig3 domain of palladin is the minimal binding site for F-actin. In this work, we compare functions of the 90 kDa isoform of palladin to the isolated actin binding domain. To understand the mechanism of action for how palladin can influence actin assembly, we monitored F-actin binding and bundling as well as actin polymerization, depolymerization, and copolymerization. Together, these results demonstrate that there are key differences between the Ig3 domain and full-length palladin in actin binding stoichiometry, polymerization, and interactions with G-actin. Understanding the role of palladin in regulating the actin cytoskeleton may help us develop means to prevent cancer cells from reaching the metastatic stage of cancer progression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.