Abstract

Coiled-coil peptides represent the principal building blocks for structure-based design of bionanomaterials. The sequence-structure relationship and precise nanoscale ordering of the coiled-coil helices originate from the knob-into-hole (KIH) packing of side chains. The helical interface stabilized by the KIH interaction is known to have chain lengths ranging from 30 to 1000 residues. Yet the shortest peptide required for oligomerization through KIH assembly is still unknown. Here, we report that through atomic resolution a minimal seven-residue amphipathic helix forms a different type of KIH motif, termed "supramolecular KIH packing", which confers an exceptional stability to the helical dimers. Significantly, at a low pH, the peptide self-assembles into nanofibers with coiled-coil architecture resembling the natural fibrous proteins. Furthermore, hierarchical ordering of the nanofibers affords lyotropic liquid crystals composed of a shortest natural helical sequence. Thus, this study expands the sequence space for a coiled-coil folding manifold and provides another paradigm for designer nanomaterials from minimal helical sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.