Abstract

This paper proposes an extended model based on ACR model: Functional coefficient autoregressive conditional root model (FCACR). Under some assumptions, the authors show that the process is geometrically ergodic, stationary and all moments of the process exist. The authors use the polynomial spline function to approximate the functional coefficient, and show that the estimate is consistent with the rate of convergence Op(hν+1 + n−1/3). By simulation study, the authors discover the proposed method can approximate well the real model. Furthermore, the authors apply the model to real exchange rate data analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.