Abstract

Dehydrins, a family of hydrophilic and intrinsically disordered proteins, are a subgroup of late embryogenesis abundant proteins that perform different protective roles in plants. Although the transition from a disordered to an ordered state has been associated with dehydrin function or interactions with specific partner molecules, the question of how the primary and secondary dehydrin protein structure is related to specific functions or target molecule preferences remains unresolved. This work addresses the in silico sequencing analysis and in vitro functional characterization of two dehydrin isoforms, VviDHN2 and VviDHN4, from Vitis vinifera. Conformational changes suggest potential interactions with a broad range of molecules and could point to more than one function. The in silico analysis showed differences in conserved segments, specific amino acid binding sequences, heterogeneity of structural properties and predicted sites accessible for various post-translational modifications between the sequence of both dehydrins. Moreover, in vitro functional analysis revealed that although they both showed slight antifungal activity, only VviDHN4 acts as a molecular shield that protects proteins from freezing and dehydration. VviDHN4 also demonstrated high potential as a chaperone and reactive oxygen species scavenger, in addition to presenting antifreeze activity, all of which confirms its multifunctional nature. Our findings highlight the significant role of Y-segments and the differential and specific amino acid composition of less conserved segments that are rich in polar/charged residues between S- and K-segments, coupled with post-translational modifications, in modulating and switching dehydrin biological function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call