Abstract

Extracellular matrix (ECM) remodeling is essential for facilitating developmental processes. ECM remodeling, accomplished by matrix metalloproteinases (MMPs), is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs). While the TIMP N-terminal domain is involved in inhibition of MMP activity, the C-terminal domain exhibits cell-signaling activity, which is TIMP and cell type dependent. We have previously examined the distinct roles of the Xenopus laevis TIMP-2 and -3 C-terminal domains during development and here examined the unique roles of TIMP-1 N- and C-terminal domains in early X. laevis embryos. mRNA microinjection was used to overexpress full-length TIMP-1 or its individual N- or C-terminal domains in embryos. Full-length and C-terminal TIMP-1 resulted in increased lethality compared to N-terminal TIMP-1. Overexpression of C-terminal TIMP-1 resulted in significant decreases in mRNA levels of proteolytic genes including TIMP-2, RECK, MMP-2, and MMP-9, corresponding to decreases in MMP-2 and -9 protein levels, as well as decreased MMP-2 and MMP-9 activities. These trends were not observed with the N-terminus. Our research suggests that the individual domains of TIMP-1 are capable of playing distinct roles in regulating the ECM proteolytic network during development and that the unique functions of these domains are moderated in the endogenous full-length TIMP-1 molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.