Abstract

The I5L gene is one of ~90 genes that are conserved throughout the chordopoxvirus family, and hence are presumed to play vital roles in the poxvirus life cycle. Previous work had indicated that the VP13 protein, a component of the virion membrane, was encoded by the I5L gene, but no additional studies had been reported. Using a recombinant virus that encodes an I5 protein fused to a V5 epitope tag at the endogenous locus (vI5V5), we show here that the I5 protein is expressed as a post-replicative gene and that the ~9 kDa protein does not appear to be phosphorylated in vivo. I5 does not appear to traffic to any cellular organelle, but ultrastructural and biochemical analyses indicate that I5 is associated with the membranous components of assembling and mature virions. Intact virions can be labeled with anti-V5 antibody as assessed by immunoelectron microscopy, indicating that the C' terminus of the protein is exposed on the virion surface. Using a recombinant virus which encodes only a TET-regulated copy of the I5V5 gene (vΔindI5V5), or one in which the I5 locus has been deleted (vΔI5), we also show that I5 is dispensable for replication in tissue culture. Neither plaque size nor the viral yield produced in BSC40 cells or primary human fibroblasts are affected by the absence of I5 expression.

Highlights

  • IntroductionThe prototypic poxvirus, replicates solely in the cytoplasm of infected cells

  • Vaccinia virus, the prototypic poxvirus, replicates solely in the cytoplasm of infected cells

  • Most mature virions (MV) remain within the cell, but a subset becomes enwrapped in two extra membranes derived from the Golgi apparatus or late endosomal compartment; these wrapped virions are released by exocytosis as enveloped virions (EV) and mediate cell-to-cell and distal spread [3,4]

Read more

Summary

Introduction

The prototypic poxvirus, replicates solely in the cytoplasm of infected cells. This physical autonomy is accompanied by genetic autonomy: the 192 kb DNA genome, encodes ~200 proteins involved in diverse aspects of the viral life cycle [1]. A significant number of the viral genes encode proteins that interface with the host Some of these proteins regulate intrinsic cellular responses to infection such as apoptosis and the antiviral response, whereas others represent extracellular mediators that interface with cytokines and cells of the immune system [1,5,6,7,8,9,10]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.