Abstract

Eggplant (Solanum melongena L.) is one of the most important vegetables among the Solanaceae and can be a host to fungal species causing powdery mildew (PM) disease. Specific homologs of the plant Mildew Locus O (MLO) gene family are PM susceptibility factors, as their loss of function results in a recessive form of resistance known as mlo resistance. In a previous work, we isolated the eggplant MLO homolog SmMLO1. SmMLO1 is closely related to MLO susceptibility genes characterized in other plant species. However, it displays a peculiar non-synonymous substitution that leads to a T→M amino acid change at protein position 422, in correspondence of the MLO calmodulin-binding domain. In this study, we performed the functional characterization of SmMLO1. Transgenic overexpression of SmMLO1 in a tomato mlo mutant compromised resistance to the tomato PM pathogen Oidium neolycopersici, thus indicating that SmMLO1 is a PM susceptibility factor in eggplant. PM susceptibility was also restored by the transgenic expression of a synthetic gene, named s-SmMLO1, encoding a protein identical to SmMLO1, except for the presence of T at position 422. This indicates that the T→M polymorphism does not affect the protein role as PM susceptibility factor. Overall, the results of this work are of interest for the functional characterization of MLO proteins and the introduction of PM resistance in eggplant using reverse genetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call