Abstract

Poly(ADP-ribose) polymerases (PARPs) comprise a growing family of enzymes known to be involved in genotoxic signaling and metabolic regulation. One of the latest family members, tankyrase 1, was shown to be involved in maintenance of telomere integrity. Here we expressed full-length tankyrase 1 and a fragment, termed T-PARP, spanning the poly(ADP-ribose) polymerase domain and characterized the enzymatic properties of the two proteins. Both, tankyrase 1 and T-PARP catalyze an auto poly(ADP-ribosyl)ation reaction with comparable catalytic activity. In contrast, (ADP-ribosyl)ation of TRF1, a previously described substrate, is strongly performed only by the full-length enzyme but not by T-PARP. Characterization of the poly(ADP-ribose) products reveals that tankyrase 1 synthesizes polymers with an average chain length of 20 units and no detectable branching of the polymers. Finally, we show that the catalytic efficiency of tankyrase 1, as expressed by the k(cat)/K(m) value, is approximately 150-fold lower compared to the basal activity of the poly(ADP-ribose) polymerase, PARP 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.