Abstract

BackgroundChloroquine (CQ)-resistant Plasmodium falciparum malaria has been a global health catastrophe, yet much about the CQ resistance (CQR) mechanism remains unclear. Hallmarks of the CQR phenotype include reduced accumulation of protonated CQ as a weak base in the digestive vacuole of the erythrocyte-stage parasite, and chemosensitization of CQ-resistant (but not CQ-sensitive) P. falciparum by agents such as verapamil. Mutations in the P. falciparum CQR transporter (PfCRT) confer CQR; particularly important among these mutations is the charge-loss substitution K→T at position 76. Dictyostelium discoideum transformed with mutant PfCRT expresses key features of CQR including reduced drug accumulation and verapamil chemosensitization.Methodology and FindingsWe describe the isolation and characterization of PfCRT-transformed, hematin-free vesicles from D. discoideum cells. These vesicles permit assessments of drug accumulation, pH, and membrane potential that are difficult or impossible with hematin-containing digestive vacuoles from P. falciparum-infected erythrocytes. Mutant PfCRT-transformed D. discoideum vesicles show features of the CQR phenotype, and manipulations of vesicle membrane potential by agents including ionophores produce large changes of CQ accumulation that are dissociated from vesicular pH. PfCRT in its native or mutant form blunts the ability of valinomycin to reduce CQ accumulation in transformed vesicles and decreases the ability of K+ to reverse membrane potential hyperpolarization caused by valinomycin treatment.ConclusionIsolated vesicles from mutant-PfCRT-transformed D. discoideum exhibit features of the CQR phenotype, consistent with evidence that the drug resistance mechanism operates at the P. falciparum digestive vacuole membrane in malaria. Membrane potential apart from pH has a major effect on the PfCRT-mediated CQR phenotype of D. discoideum vesicles. These results support a model of PfCRT as an electrochemical potential-driven transporter in the drug/metabolite superfamily that (appropriately mutated) acts as a saturable simple carrier for the facilitated diffusion of protonated CQ.

Highlights

  • The advent and spread of CQ-resistant Plasmodium falciparum malaria marked a great global health catastrophe of the 20th century

  • Isolated vesicles from mutant-P. falciparum CQR transporter (PfCRT)-transformed D. discoideum exhibit features of the CQ resistance (CQR) phenotype, consistent with evidence that the drug resistance mechanism operates at the P. falciparum digestive vacuole membrane in malaria

  • To test for a comparable effect of pre-established vacuolar concentrations of unlabeled CQ on the features of CQR transferred to D. discoideum, we performed similar [3H]-CQ accumulation experiments with untransformed D. discoideum cells, cells transformed with wild-type PfCRT (WT-CRT; from CQ-sensitive parasite HB3), and cells transformed with a mutated form of PfCRT (SEA-CRT; from CQ-resistant parasite Dd2) [41]

Read more

Summary

Introduction

The advent and spread of CQ-resistant Plasmodium falciparum malaria marked a great global health catastrophe of the 20th century. Mutations in the parasite-encoded P. falciparum CQR transporter (PfCRT) confer CQR; important among these mutations in naturally resistant parasites is the charge-loss substitution KRT at position 76 [9,10]. Chloroquine (CQ)-resistant Plasmodium falciparum malaria has been a global health catastrophe, yet much about the CQ resistance (CQR) mechanism remains unclear. Hallmarks of the CQR phenotype include reduced accumulation of protonated CQ as a weak base in the digestive vacuole of the erythrocyte-stage parasite, and chemosensitization of CQresistant (but not CQ-sensitive) P. falciparum by agents such as verapamil. Mutations in the P. falciparum CQR transporter (PfCRT) confer CQR; important among these mutations is the charge-loss substitution KRT at position 76. Dictyostelium discoideum transformed with mutant PfCRT expresses key features of CQR including reduced drug accumulation and verapamil chemosensitization

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call