Abstract

Genome-wide association studies have suggested a role for a genetic variation in the presynaptic gene PCLO in major depressive disorder (MDD). As with many complex traits, the PCLO variant has a small contribution to the overall heritability and the association does not always replicate. One variant (rs2522833, p.Ser4814Ala) is of particular interest given that it is a common, nonsynonymous exon variant near a calcium-sensing part of PCLO. It has been suggested that the molecular effects of such variations penetrate to a variable extent in the population due to phenotypic and genotypic heterogeneity at the population level. More robust effects may be exposed by studying such variations in isolation, in a more homogeneous context. We tested this idea by modeling PCLO variation in a mouse knock-in model expressing the PcloSA/SA variant. In the highly homogeneous background of inbred mice, two functional effects of the SA-variation were observed at the cellular level: increased synaptic Piccolo levels, and 30% increased excitatory synaptic transmission in cultured neurons. Other aspects of Piccolo function were unaltered: calcium-dependent phospholipid binding, synapse formation in vitro, and synaptic accumulation of synaptic vesicles. Moreover, anxiety, cognition and depressive-like behavior were normal in PcloSA/SA mice. We conclude that the PCLO p.Ser4814Ala missense variant produces mild cellular phenotypes, which do not translate into behavioral phenotypes. We propose a model explaining how (subtle) cellular phenotypes do not penetrate to the mouse behavioral level but, due to genetic and phenotypic heterogeneity and non-linearity, can produce association signals in human population studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.