Abstract

Saccharomyces cerevisiae expresses two proteins that together support high-affinity Fe-uptake. These are a multicopper oxidase, Fet3p, with specificity towards Fe²⁺ and a ferric iron permease, Ftr1p, which supports Fe-accumulation. Homologues of the genes encoding these two proteins are found in all fungal genomes including those for the pathogens, Candida albicans and Cryptococcus neoformans. At least one of these loci represents a virulence factor for each pathogen suggesting that this complex would be an appropriate pharmacologic target. However, the mechanism by which this protein pair supports Fe-uptake in any fungal pathogen has not been elucidated. Taking advantage of the robust molecular genetics available in S. cerevisiae, we identify the two of five candidate ferroxidases likely involved in high-affinity Fe-uptake in C. albicans, Fet31 and Fet34. Both localize to the yeast plasma membrane and both support Fe-uptake along with an Ftr1 protein, either from C. albicans or from S. cerevisiae. We express and characterize Fet34, demonstrating that it is functionally homologous to ScFet3p. Using S. cerevisiae as host for the functional expression of the C. albicans Fe-uptake proteins, we demonstrate that they support a mechanism of Fe-trafficking that involves channelling of the CaFet34-generated Fe³⁺ directly to CaFtr1 for transport into the cytoplasm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.