Abstract

BackgroundThe unfolded protein response (UPR) is an evolutionary conserved adaptive reaction for increasing cell survival under endoplasmic reticulum (ER) stress conditions. X-box-binding protein-1 (Xbp1) is a key transcription factor of UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The UPR induced by ER stress was extensively studied in diseases linked to protein misfolding and aggregations. However, in the porcine system, genes in the UPR pathway were not investigated. In this study, we isolated and characterized the porcine Xbp1 (pXbp1) gene in ER stress using porcine embryonic fibroblast (PEF) cells and porcine organs. ER stress was induced by the treatment of tunicamycin and cell viability was investigated by the MTT assay. For cloning and analyzing the expression pattern of pXbp1, RT-PCR analysis and Western blot were used. Knock-down of pXbp1 was performed by the siRNA-mediated gene silencing.ResultsWe found that the pXbp1 mRNA was the subject of the IRE1α-mediated unconventional splicing by ER stress. Knock-down of pXbp1 enhanced ER stress-mediated cell death in PEF cells. In adult organs, pXbp1 mRNA and protein were expressed and the spliced forms were detected.ConclusionsIt was first found that the UPR mechanisms and the function of pXbp1 in the porcine system. These results indicate that pXbp1 plays an important role during the ER stress response like other animal systems and open a new opportunity for examining the UPR pathway in the porcine model system.

Highlights

  • The unfolded protein response (UPR) is an evolutionary conserved adaptive reaction for increasing cell survival under endoplasmic reticulum (ER) stress conditions

  • Three distinct UPR signaling pathways exist in mammalian cells that include ER transmembrane inositolrequiring enzyme 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6) pwthways [3]

  • We tested whether the treatment of TM triggers ER stress-induced cell death in porcine embryonic fibroblast (PEF) cells

Read more

Summary

Introduction

The unfolded protein response (UPR) is an evolutionary conserved adaptive reaction for increasing cell survival under endoplasmic reticulum (ER) stress conditions. X-box-binding protein-1 (Xbp1) is a key transcription factor of UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. Three distinct UPR signaling pathways exist in mammalian cells that include ER transmembrane inositolrequiring enzyme 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6) pwthways [3]. Upon the activation of IRE1a by ER stress, the endonuclease domain of IRE1 splices the XBP1 mRNA and removes 26 base pairs from the full-length XBP1 mRNA by the unconventional splicing This event results in the conversion of the premature unspliced XBP1 protein (XBP1u, 267 amino acids) to the spliced XBP1 protein (XBP1s, 371 amino acids) by the frame shift. XBP1s induces a subset of UPR target genes related to protein quality control, ER translocation, glycosylation, and ER/Golgi biogenesis [1,6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call