Abstract

The DNA-binding protein from starved cells, known as DPS, has been characterized as a crucial factor in protecting E. coli from external stresses. The DPS functions in various cellular processes, including protein-DNA binding, ferroxidase activity, compaction of chromosome and regulation of stress resistance gene expression. DPS proteins exist as oligomeric complexes; however, the specific biochemical activity of oligomeric DPS in conferring heat shock tolerance has not been fully understood. Therefore, we investigated the novel functional role of DPS under heat shock. To elucidate the functional role of DPS under heat shock conditions, we purified recombinant GST-DPS protein and demonstrated its thermostability and existence in its highly oligomeric form. Furthermore, we discovered that the hydrophobic region of GST-DPS influenced the formation of oligomers, which exhibited molecular chaperone activity, thereby preventing the aggregation of substrate proteins. Collectively, our findings highlight the novel functional role of DPS, as a molecular chaperone and may confer thermotolerance to E. coli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call