Abstract

In plants, very-long-chain fatty acids (VLCFAs; >18 carbon) are precursors of sphingolipids, triacylglycerols, cuticular waxes, and suberin. VLCFAs are synthesized by a multiprotein membrane-bound fatty acid elongation system that catalyzes four successive enzymatic reactions: condensation, reduction, dehydration, and a second reduction. A bioinformatics survey of the Arabidopsis (Arabidopsis thaliana) genome has revealed two sequences homologous to YBR159w encoding a Saccharomyces cerevisiae beta-ketoacyl reductase (KCR), which catalyzes the first reduction during VLCFA elongation. Expression analyses showed that both AtKCR1 and AtKCR2 genes were transcribed in siliques, flowers, inflorescence stems, leaves, as well as developing embryos, but only AtKCR1 transcript was detected in roots. Fluorescent protein-tagged AtKCR1 and AtKCR2 were localized to the endoplasmic reticulum, the site of fatty acid elongation. Complementation of the yeast ybr159Delta mutant demonstrated that the two KCR proteins are divergent and that only AtKCR1 can restore heterologous elongase activity similar to the native yeast KCR gene. Analyses of insertional mutants in AtKCR1 and AtKCR2 revealed that loss of AtKCR1 function results in embryo lethality, which cannot be rescued by AtKCR2 expression using the AtKCR1 promoter. In contrast, a disruption of the AtKCR2 gene had no obvious phenotypic effect. Taken together, these results indicate that only AtKCR1 is a functional KCR isoform involved in microsomal fatty acid elongation. To investigate the roles of AtKCR1 in postembryonic development, transgenic lines expressing RNA interference and overexpression constructs targeted against AtKCR1 were generated. Morphological and biochemical characterization of these lines confirmed that suppressed KCR activity results in a reduction of cuticular wax load and affects VLCFA composition of sphingolipids, seed triacylglycerols, and root glycerolipids, demonstrating in planta that KCR is involved in elongation reactions supplying VLCFA for all these diverse classes of lipids.

Highlights

  • Biochemistry, Department of Functional Characterization of the Arabidopsis β-KetoacylCoenzyme A Reductase Candidates of the Fatty Acid Elongase

  • A disruption of the AtKCR2 gene had no obvious phenotypic effect. These results indicate that only AtKCR1 is a functional ketoacyl reductase (KCR) isoform involved in microsomal fatty acid elongation

  • This study describes the functional characterization of the Arabidopsis orthologs of the yeast KCR YBR159w and confirms the central role of this enzyme activity in the synthesis of very-long-chain fatty acids (VLCFAs) in plants, as well as the essential nature of these fatty acids

Read more

Summary

Introduction

Biochemistry, Department of Functional Characterization of the Arabidopsis β-KetoacylCoenzyme A Reductase Candidates of the Fatty Acid Elongase. Follow this and additional works at: https://digitalcommons.unl.edu/biochemfacpub Part of the Biochemistry, Biophysics, and Structural Biology Commons. A disruption of the AtKCR2 gene had no obvious phenotypic effect Taken together, these results indicate that only AtKCR1 is a functional KCR isoform involved in microsomal fatty acid elongation. Morphological and biochemical characterization of these lines confirmed that suppressed KCR activity results in a reduction of cuticular wax load and affects VLCFA composition of sphingolipids, seed triacylglycerols, and root glycerolipids, demonstrating in planta that KCR is involved in elongation reactions supplying VLCFA for all these diverse classes of lipids

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.