Abstract
Extracellular nucleotides and nucleotide sugars are important danger-associated signaling molecules that play critical roles in regulation of immune responses in mammals through activation of purinergic receptors located on the cell surface. However, the immunological role of extracellular UDP-glucose-activated P2Y14 receptor (P2Y14R) in fish still remains unknown. In this study, we identified and characterized a P2Y14R paralog in the Japanese flounder (Paralichthys olivaceus). The mRNA transcripts of P2Y14R are detected in all examined Japanese flounder tissues. Compared with the UDP-activated P2Y6 receptor, however, P2Y14R gene is highly expressed in Japanese flounder head kidney macrophages (HKMs). In addition, P2Y14R is significantly upregulated following inflammatory stimulation with LPS and poly (I:C) in the HKMs, suggesting a role of P2Y14R in response to inflammation in fish. Furthermore, activation of P2Y14 receptor with its potent and selective agonist MRS 2905 resulted in a decreased expression of LPS-induced pro-inflammatory cytokine IL-1beta gene in the HKMs. In contrast, inhibition of P2Y14 receptor activity or down-regulation of the endogenous expression of P2Y14R by small interfering RNA significantly upregulates the LPS-induced pro-inflammatory cytokine IL-1beta gene expression in the HKMs, demonstrating that P2Y14R is involved in inflammation regulation in fish. Moreover, stimulation of the Japanese flounder HKMs with UDP-glucose evoked a rapid increase of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in a dose- and time-dependent manner, indicating the involvement of P2Y14R in activation of ERK1/2 signaling in fish immune cells. Taken together, we demonstrated that the inducible P2Y14R plays an important role in regulation of fish innate immunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.