Abstract
Objectives: Acellular grafts are a viable option for use in nerve reconstruction surgeries. Recently, our lab created a novel optimized decellularization procedure that removes immunological material while leaving the majority of the extracellular matrix structure intact. The optimized acellular (OA) graft has been shown to elicit an immune response equal to or less than that elicited by the isograft, the analog of the autograft in the rat model. We investigated the performance of the OA graft to provide functional recovery in a long-term study.Methods: We performed a long-term functional regeneration evaluation study using the sciatic functional index to quantify recovery of Lewis rats at regular time intervals for up to 52 weeks after graft implantation following 1 cm sciatic nerve resection. OA grafts were compared against other decellularized methods (Sondell treatment and thermal decellularization), as well as the isograft and primary neurorrhaphy.Results: The OA graft supported comparable functional recovery to the isograft and superior regeneration to thermal and Sondell decellularization methods. Furthermore, the OA graft promoted early recovery to a greater degree compared to acellular grafts obtained using either the thermal or the Sondell methods.Discussion: Equivalent functional recovery to the isograft suggests that the OA nerve graft may be a future clinical alternative to the current autologous tissue graft.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.