Abstract

ADP ribosylation factors (ARFs) are critical in the vesicular trafficking pathway. ARF activity is controlled by GTPase-activating proteins (GAPs). We have identified recently a novel tentative ARF GAP derived from human fetal liver, ARFGAP3 (originally named as ARFGAP1). In the present study, we demonstrated that ARFGAP3 had GAP activity in vitro and remarked that the GAP activity of ARFGAP3 was regulated by phospholipids, i.e. phosphatidylinositol 4,5-diphosphate as agonist and phosphatidylcholine as antagonist. ARFGAP3 is a predominantly cytosolic protein, and concentrated in the perinuclear region. Its transient ectopic overexpression in cultured mammalian cells reduced the constitutive secretion of secreted alkaline phosphatase, indicating that ectopic overexpression of ARFGAP3 inhibits the early secretory pathway of proteins in vivo. These results demonstrated that ARFGAP3 is a novel GAP for ARF1 and might be involved in intracellular traffic of proteins and vesicular transport as predicted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.