Abstract

Understanding the immunopathogenesis of neuroimmunological diseases of the CNS requires a robust method for isolating and characterizing the immune effector cells that infiltrate the spinal cord in animal models. We have developed a simple and rapid isolation method that produces high yields of spinal cord infiltrating leukocytes from a single demyelinated spinal cord and which maintains high surface expression of key immunophenotyping antigens. Using this method and the Theiler's virus model of chronic demyelination, we report the presence of spinal cord infiltrating acute effector CD8 + lymphocytes that are CD45 hiCD44 loCD62L − and a population of spinal cord infiltrating target effector memory CD8 + lymphocytes that are CD45 hiCD44 hiCD62L −. These cells respond robustly to ex vivo stimulation by producing interferon γ but do not exhibit specificity for Theiler's virus in a cytotoxicity assay. We conclude that target-derived lymphocytes in a mouse model of chronic spinal cord demyelination may have unique functional specificities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.