Abstract

Bidirectional transport studies were conducted to determine whether substrates of five intestinal transporters showed carrier-mediated asymmetric transport across MDCK (Madin-Darby canine kidney) cell monolayers grown under standard conditions. Drug concentrations were quantitated using liquid scintillation counting, liquid chromatography/mass spectrometry/mass spectrometry, or liquid chromatography/mass spectrometry. In the presence of a pH gradient, benzoic acid exhibited net apical-to-basolateral transport, with apparent permeability ratios (apical-to-basolateral permeability/basolateral-to-apical permeability) ranging from 14 to 25. The addition of valproic acid reduced the permeability ratio by 70-90%. Cephalexin transport also exhibited net absorption in the presence of a pH gradient, with apparent permeability ratios ranging from 14 to 71, depending on growth conditions. Radiolabeled phenylalanine exhibited a low level of carrier-mediated absorption with an apparent permeability ratio of 1.8 that was reduced to 1.0 in the presence of unlabeled L-phenylalanine. Taurocholic acid did not exhibit carrier-mediated absorption. Cyclosporine and fexofenadine exhibited P-glycoprotein-mediated efflux from both MDCK and Caco-2 cells, which was more sensitive to inhibition in MDCK cells. These results suggest that although MDCK cell monolayers may be a useful model for evaluating transport by the absorptive monocarboxylic acid and peptide transporters and the efflux transporter, P-glycoprotein, they are not useful for predicting large neutral amino acid or bile acid transport in the intestine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call