Abstract

Mitochondrial carnitine palmitoyltransferases I and II (CPTI and CPTII), together with the carnitine carrier, transport long-chain fatty acyl-CoA from the cytosol to the mitochondrial matrix for beta-oxidation. Recent progress in the expression of CPTI and CPTII cDNA clones in Pichia pastoris, a yeast with no endogenous CPT activity, has greatly facilitated the characterization of these important enzymes in fatty acid oxidation. It is now well established that yeast-expressed CPTI is a catalytically active, malonyl CoA-sensitive, distinct enzyme that is reversibly inactivated by detergents. CPTII is a catalytically active, malonyl CoA-insensitive, distinct enzyme that is detergent stable. Reconstitution studies with yeast-expressed CPTI have established for the first time that detergent inactivation of CPTI is reversible, suggesting that CPTI is active only in a membrane environment. By constructing a series of deletion mutants of the N-terminus of liver CPTI, we have mapped the residues essential for malonyl CoA inhibition and binding to the conserved first six N-terminal amino acid residues. Mutation of glutamic acid 3 to alanine abolished malonyl CoA inhibition and high affinity malonyl CoA binding, but not catalytic activity, whereas mutation of histidine 5 to alanine caused partial loss in malonyl CoA inhibition. Our mutagenesis studies demonstrate that glutamic acid 3 and histidine 5 are necessary for malonyl CoA inhibition and binding to liver CPTI, but not catalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call