Abstract

The injection of poly(A)+ mRNA prepared from Philosamia cynthia midgut caused time- and dose-dependent increases of leucine transport in Xenopus laevis oocytes, with an increase in leucine uptake 1.5-3 times that of oocytes injected with water. When the NaCl concentration was reduced from 100 to 5 mmol l-1, the difference between mRNA- and water-injected oocytes was greater and a fourfold increase of L-leucine uptake was measured. D-Leucine (10 mmol l-1) completely inhibited the induced uptake of 0.1 mmol l-1 L-leucine. The newly expressed component of L-leucine uptake increased at alkaline pH and was abolished by incubation for 15 min with 15 mmol l-1 phenylglyoxal. The mean Km values, calculated using Na+ activation curves of leucine uptake, were 23.3 +/- 6.1 mmol l-1 in water-injected oocytes and 0.4 +/- 0.2 mmol l-1 for the newly expressed component of leucine uptake in mRNA-injected oocytes. On the basis of these results, we conclude that the increase of L-leucine uptake in mRNA-injected oocytes was due to the expression of a new transport system, which differs from the endogenous ones and shares many features with that found previously in Philosamia cynthia midgut.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.