Abstract

The carnitine transporter OCTN2 is responsible for the renal reabsorption of filtered L-carnitine. However, there is controversy regarding the intestinal L-carnitine transport mechanism(s). In this study, the characteristics of L-carnitine transport in both, isolated chicken enterocytes and brush-border membrane vesicles (BBMV) were studied. In situ hybridization was also performed in chicken small intestine. Chicken enterocytes maintain a steady-state L-carnitine gradient of 5 to 1 and 90% of the transported L-carnitine remains in a readily diffusive form. After 5 min, L-Carnitine uptake into BBMV overshot the equilibrium value by a factor of 2.5. Concentrative L-carnitine transport is Na+-, membrane voltage-and pH-dependent, has a high affinity for L-carnitine (Km 26 - 31 microM ) and a 1:1 Na+: L-carnitine stoichiometry. L-Carnitine uptake into either enterocytes or BBMV was inhibited by excess amount of cold L-carnitine > D-carnitine = acetyl-L-carnitine = gamma-butyrobetaine > palmitoyl-L-carnitine > betaine > TEA, whereas alanine, histidine, GABA or choline were without significant effect. In situ hybridization studies revealed that only the cells lining the intestinal villus expressed OCTN2 mRNA. This is the first demonstration of the operation of a Na+/L-carnitine cotransport system in the apical membrane of enterocytes. This transporter has properties similar to those of OCTN2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.