Abstract

UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) is a bifunctional enzyme (N-terminal epimerase and C-terminal Kinase domain) that catalyses the rate limiting step in sialic acid biosynthesis. More than 200 homozygous missense or compound heterozygous mutations in GNE have been reported worldwide to cause a rare neuromuscular disorder, GNE myopathy. It is characterized by a slowly progressive defect in proximal and distal skeletal muscles with patients becoming wheel-chair-bound. There are no current approved therapies available for GNE myopathy. ManNAc therapy is currently in advanced clinical trials and has shown signs of slowing the disease progression in a phase 2 trial. The present study aims to understand the effect of GNE mutation on its enzymatic activity and identification of potential small effector molecules. We characterized different GNE mutations (p.Asp207Val, p.Val603Leu, p.Val727Met, p.Ile618Thr and p.Arg193Cys) prevalent in Asian population that were cloned, expressed and purified from Escherichia coli as full-length recombinant proteins. Our study demonstrates that full length GNE can be expressed in E. coli in its active form and analysed for the functional activity. Each mutation showed variation in epimerase and kinase activity and responded to the small effector molecules (metformin, BGP-15 kaempferol, catechin, quercetin) in a differential manner. Our study opens an area for futuristic structural determination of full length GNE and identification of potential therapeutic molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.