Abstract

Gefitinib, an inhibitor of epidermal growth factor receptor tyrosine kinase, has been developed and approved for treatment of advanced non-small cell lung cancer (NSCLC). In this study, we investigated the uptake of gefitinib in gefitinib-sensitive and -resistant NSCLC cell lines. The transport system was temperature-dependent, indicative of an active process and sodium- and potential-independent. Moreover, high cell densities and low extracellular pH significantly reduced the uptake of gefitinib. Inhibitors of the human organic cation transporter 1 (hOCT1) significantly decreased gefitinib uptake; however, gefitinib was not a substrate for hOCT1 or hOCT2 in overexpressing HEK293 cells. Interestingly, gefitinib significantly reduced uptake of the hOCT prototypical substrate MPP suggesting that gefitinib may exert an inhibitory effect on the intracellular accumulation of drugs transported by hOCT1 and hOCT2. After 15 min of treatment at 1 μM (the maximum plasma concentration of gefitinib obtained at the clinically relevant dose) gefitinib accumulated within the cell in resistant-cell lines at concentrations similar or even higher than in gefitinib-sensitive cells tending to rule out an alteration in drug uptake as a mechanism of resistance to gefitinib treatment. Moreover, our results suggest that the extrusion of lactate by crowded cells may contribute in decreasing the pH, which in turn can influence the uptake of gefinitib and as a result the inhibition of EGFR autophosphorylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.