Abstract

BackgroundMolecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3) in cytogenetically normal acute myeloid leukemia (AML) has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD) and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative.Methodology/Principal FindingsUsing single cell network profiling (SCNP), cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb) and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT) or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L), including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling deregulation and provide additional information for disease characterization and management.Conclusions/SignificanceThese studies show the feasibility of SCNP to assess modulated intracellular signaling pathways and characterize the biology of individual AML samples in the context of genetic alterations.

Highlights

  • acute myeloid leukemia (AML) is associated with a wide range of genetic alterations, including mutations in receptor tyrosine kinases (RTKs) that perturb intracellular signaling networks which play a role in leukemia pathogenesis and are manifested in the clinical heterogeneity of the disease

  • The first sample set consisted of 34 cryopreserved diagnostic peripheral blood mononuclear cell (PBMC) samples collected between September 1998 and September 2007 from AML patients treated at hospitals affiliated with the University Health Network (PMH/UHN), University of Toronto

  • This approach has been applied previously to AML using a limited panel of nodes [39], this study describes the high-throughput application of the technology, using a standardized 96-well format, examining a broader panel of nodes in a larger numbers of AML patients and in independently assayed sample sets

Read more

Summary

Introduction

AML is associated with a wide range of genetic alterations, including mutations in receptor tyrosine kinases (RTKs) that perturb intracellular signaling networks which play a role in leukemia pathogenesis and are manifested in the clinical heterogeneity of the disease. Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3) in cytogenetically normal acute myeloid leukemia (AML) has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD) and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. Examination of variation in cellular responsiveness to signaling modulation may be more informative

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call