Abstract

We have characterized Escherichia coli DNA adenine methyltransferase, a critical regulator of bacterial virulence. Steady-state kinetics, product inhibition, and isotope exchange studies are consistent with a kinetic mechanism in which the cofactor S-adenosylmethionine binds first, followed by sequence-specific DNA binding and catalysis. The enzyme has a fast methyl transfer step followed by slower product release steps, and we directly demonstrate the competence of the enzyme cofactor complex. Methylation of adjacent GATC sites is distributive with DNA derived from a genetic element that controls the transcription of the adjacent genes. This indicates that the first methylation event is followed by enzyme release. The affinity of the enzyme for both DNA and S-adenosylmethionine was determined. Our studies provide a basis for further structural and functional analysis of this important enzyme and for the identification of inhibitors for potential therapeutic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.