Abstract

Desiccation tolerance (DT) is gradually lost during seed germination, while it can be re-established by pre-treatment with polyethylene glycol (PEG) and/or abscisic acid (ABA). Increasing knowledge is available on several stress-related proteins in DT re-establishment in herb seeds, but limited information exists on novel proteins in wood seeds. This study aimed to investigate the role of metallothionein CkMT4, a protein species with the highest fold increase in abundance in Caragana korshinskii seeds on PEG treatment. The fluctuation in mRNA levels of CkMT4 during seed development was consistent with the changes in DT, and the expression of CkMT4 could be up-regulated by ABA. Besides metal-binding capacity, CkMT4 might supply Cu2+/Zn2+ to superoxide dismutase (SOD) under high redox potential provided by PEG treatment for excess reactive oxygen species (ROS) scavenging. The overexpression of CkMT4 in yeast results in enhanced oxidation resistance. Experimentally, this study demonstrated the overexpression of CkMT4 in Arabidopsis seeds benefited the re-establishment of DT and enhanced the activity of SOD. On the whole, these findings suggested that CkMT4 facilitated the re-establishment of DT in C. korshinskii seeds mainly through diminishing excess ROS, which put the mechanism underlying the re-establishment of DT in xerophytic wood seeds into a new perspective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.