Abstract

An oxidosqualene cyclase (PdFRS) from Populus davidiana was characterized as a monofunctional friedelin synthase by its heterologous expression in yeast and overexpression in plants. Triterpenesare one of the largest classes of plant chemical compounds composed of threeterpeneunits, which form the basic skeleton of all sterols and saponins. Friedelin (friedelan-3-one), a pentacyclic triterpene, occurs in many plant families and is particularly present in rich amounts in cork tissues from trees. The biosynthesis of friedelin occurs through the oxidosqualene cyclase (OSC) enzyme that generates friedelin from 2,3-oxidosqualene after the maximum rearrangement of a triterpene skeleton. Populus davidiana is called Korean aspen and grows in northern East Asia. From 57,322 unique sequences generated from the P. davidiana transcriptome database, one complete coding sequence (PdFRS) was obtained from a contig, which showed 74% identity to Betula platyphylla β-amyrin synthase and 73% identity with friedelin synthase from Maytenus ilicifolia. The open reading frame (ORF) region of the PdFRS sequence was 2280bp long and composed a 759 amino acid protein with a predicted molecular mass of 87.81kDa. qPCR analysis revealed that methyl jasmonate treatments strongly upregulated PdFRS gene expression and resulted in enhanced friedelin accumulation in leaves. Heterologous expression of the PdFRS gene in yeast resulted in the production of friedelin triterpene as a single product, which was confirmed by comparison with the mass fragmentation pattern from an authentic friedelin standard by GC/MS analysis. Transgenic P. davidiana overexpressing the PdFRS gene was constructed via Agrobacterium-mediated transformation. Overexpression of PdFRS in transgenic P. davidiana lines resulted in enhanced friedelin production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call