Abstract

Adenylyl cyclases are key points for the integration of stimulatory and inhibitory G protein-coupled receptor (GPCR) signals. Adenylyl cyclase type 5 (AC5) is highly expressed in striatal medium spiny neurons (MSNs), and is known to play an important role in mediating striatal dopaminergic signaling. Dopaminergic signaling from the D1 expressing MSNs of the direct pathway, as well as the D2 expressing MSNs of the indirect pathway both function through the regulation of AC5 activity, controlling the production of the 2nd messenger cAMP, and subsequently the downstream effectors. Here, we used a newly developed cell line that used Crispr-Cas9 to eliminate the predominant adenylyl cyclase isoforms to more accurately characterize a series of AC5 gain-of-function mutations which have been identified in ADCY5-related dyskinesias. Our results demonstrate that these AC5 mutants exhibit enhanced activity to Gαs-mediated stimulation in both cell and membrane-based assays. We further show that the increased cAMP response at the membrane effectively translates into increased downstream gene transcription in a neuronal model. Subsequent analysis of inhibitory pathways show that the AC5 mutants exhibit significantly reduced inhibition following D2 dopamine receptor activation. Finally, we demonstrate that an adenylyl cyclase “P-site” inhibitor, SQ22536 may represent an effective future therapeutic mechanism by preferentially inhibiting the overactive AC5 gain-of-function mutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.