Abstract

We have cloned a Na(+)/H(+) antiporter gene (GenBank accession no EF440291, PtNHA1) from Puccinellia tenuiflora (so-called alkali grass in Chinese) roots under NaCl salt stress. Its cDNA is 3775 bp and contains a 3414 bp open reading frame. The amino acid sequences of PtNHA1 show high identities with a putative plasma membrane Na(+)/H(+) antiporter from wheat. PtNHA1 was predicted to contain 11 hypothetical transmembrane domains in the N-terminal part and to localize in the plasma membrane. Genomic DNA gel blot analysis shows that PtNHA1 is a single-copy gene in the alkali grass genome. PtNHA1 is highly expressed in leaves, roots and shoots by RNA gel blot analysis. Furthermore, PtNHA1 gene expression of alkali grass was clearly up-regulated by NaCl salt stress. Overexpression of PtNHA1 in Arabidopsis resulted in enhanced tolerance of transgenic plants to NaCl stress. The ion contents analysis shows that, compared with the wild-type (WT), less Na(+) and more K(+) were accumulated in transgenic plants under NaCl stress. The results indicate that PtNHA1 play an important role in NaCl salt stress. Additionally, compared with the WT, total activities of ascorbate peroxidase (APX) and catalase (CAT), two key reactive oxygen species (ROS) detoxifying enzymes were high in transgenic plants under salt stress, respectively. The transcript levels of two APX genes (Apx1, s/mApx) and two CAT genes (Cat1, Cat2) in transgenic plants were higher than those in WT. This suggests that overexpression of PtNHA1 results in enhanced ROS-scavenging enzymes of transgenic plants under NaCl salt stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.