Abstract

Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRCs) inherited in an autosomal-dominant manner. Here, we reported a multigeneration Chinese family clinically diagnosed with LS according to the Amsterdam II criteria. To identify the underlying causative gene for LS in this family, whole-exome sequencing (WES) was performed. A germline missense variant (c.2054C>T:p.S685F) in exon 18 of MLH1 was successfully identified by WES. Sanger sequencing verified the results of WES and also confirmed the cosegregation of the MLH1 missense variant in all affected members of the family including two unaffected family members. Bioinformatic tools predicted the identified MLH1 variant as deleterious. Immunohistochemistry (IHC) staining showed loss of MLH1 and PMS2 protein expression. In vitro expression analysis also revealed that the identified MLH1 missense variant (c.2054C>T:p.S685F) results in reduced expression of both MLH1 and PMS2 proteins. Based on the American College of Medical Genetics and Genomics (ACMG) guidelines, the missense mutation c.2054C>T in MLH1 was classified as a “pathogenic” variant. Two unaffected family members were later recommended for colonoscopy and other important cancer diagnostic inspections every 1-2 years as both were at higher risk of LS. In conclusion, our findings widen the genotypic spectrum of MLH1 mutations responsible for LS. This study increases the phenotypic spectrum of LS which will certainly help the clinicians in diagnosing LS in multigeneration families. This study also puts emphasis on the importance of genetic counselling for the benefit of asymptomatic carriers of MMR gene variants who are at higher risk of LS.

Highlights

  • Lynch syndrome (LS; MIM#120435), known as hereditary nonpolyposis colorectal cancer syndrome (HNPCC), is a hereditary disease that increases the risk of colorectal cancer (Lynch syndrome 1), as well as several others, such as endometrial cancer, stomach cancer, ovarian cancer, and cancer of the small intestine or biliary tract (Lynch syndrome 2) [1,2,3]

  • The main cause of LS is dysfunctioning of the DNA mismatch repair (MMR) mechanism, which plays a critical role in correcting replication errors that escape the proofreading activity of DNA polymerase [1]

  • Mutation in any of these MMR genes can result in a defective MMR mechanism, which leads to microsatellite instability (MSI), which occurs in a high percentage of LS tumors [4]

Read more

Summary

Introduction

Lynch syndrome (LS; MIM#120435), known as hereditary nonpolyposis colorectal cancer syndrome (HNPCC), is a hereditary disease that increases the risk of colorectal cancer (Lynch syndrome 1), as well as several others, such as endometrial cancer, stomach cancer, ovarian cancer, and cancer of the small intestine or biliary tract (Lynch syndrome 2) [1,2,3]. The main cause of LS is dysfunctioning of the DNA mismatch repair (MMR) mechanism, which plays a critical role in correcting replication errors that escape the proofreading activity of DNA polymerase [1]. These replication errors can be mismatches and small insertions or deletions. There are several genes known to play important roles in the MMR system: MLH1, MSH2, MSH6, PMS2, etc. MLH1 and PMS2 proteins bind to form a heterodimer called MutLα; MSH2 and MSH6 proteins form a heterodimer called MutSα. The role of MutSα in the MMR mechanism is to recognize mismatch bases along the newly synthesized DNA strand. The EPCAM gene, upstream of MSH2, is responsible for 3% of LS cases, and mutations in this gene can cause epigenetic hypermethylation of the MSH2 promoter [8]

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.