Abstract
Atypical femoral fractures (AFFs) are a rare but potentially devastating event, often but not always linked to bisphosphonate (BP) therapy. The pathogenic mechanisms underlying AFFs remain obscure, and there are no tests available that might assist in identifying those at high risk of AFF. We previously used exome sequencing to explore the genetic background of three sisters with AFFs and three additional unrelated AFF cases, all previously treated with BPs. We detected 37 rare mutations (in 34 genes) shared by the three sisters. Notably, we found a p.Asp188Tyr mutation in the enzyme geranylgeranyl pyrophosphate synthase, a component of the mevalonate pathway, which is critical to osteoclast function and is inhibited by N-BPs. In addition, the CYP1A1 gene, responsible for the hydroxylation of 17β-estradiol, estrone, and vitamin D, was also mutated in all three sisters and one unrelated patient. Here we present a detailed list of the variants found and report functional analyses of the GGPS1 p.Asp188Tyr mutation, which showed a severe reduction in enzyme activity together with oligomerization defects. Unlike BP treatment, this genetic mutation will affect all cells in the carriers. RNAi knockdown of GGPS1 in osteoblasts produced a strong mineralization reduction and a reduced expression of osteocalcin, osterix, and RANKL, whereas in osteoclasts, it led to a lower resorption activity. Taken together, the impact of the mutated GGPPS and the relevance of the downstream effects in bone cells make it a strong candidate for AFF susceptibility. We speculate that other genes such as CYP1A1 might be involved in AFF pathogenesis, which remains to be functionally proved. The identification of the genetic background for AFFs provides new insights for future development of novel risk assessment tools. © 2018 American Society for Bone and Mineral Research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.