Abstract

A strong increase in the level of dehydrin/response ABA transcripts expression reported from the 14th week after flowering coincident with the accumulation of 26 and 44 kDa dehydrins in the embryonic axes of developing beech (Fagus sylvatica L.) seeds. Both transcript and protein levels were strongly correlated with maturation drying. These results suggest that the 44-kDa dehydrin protein is a putative dimer of dehydrin/response ABA protein migrating as a 26-kDa protein. Dehydrins and dehydrin-like proteins form large oligomeric complexes under native conditions and are shown as several spots differing in pI through isoelectrofocusing analyses. Detailed prediction of specific sites accessible for various post-translational modifications (PTMs) in the dehydrin/response ABA protein sequence revealed sites specific to acetylation, amidation, glycosylation, methylation, myristoylation, nitrosylation, O-linked β-N-acetylglucosamination and Yin-O-Yang modification, palmitoylation, phosphorylation, sumoylation, sulfation, and ubiquitination. Thus, these results suggest that specific PTMs might play a role in switching dehydrin function or activity, water binding ability, protein-membrane interactions, transport and subcellular localization, interactions with targeted molecules, and protein stability. Despite the ability of two Cys residues to form a disulfide bond, –SH groups are likely not involved in dimer arrangement. His-rich regions and/or polyQ-tracts are potential candidates as spatial organization modulators. Dehydrin/response ABA protein is an intrinsically disordered protein containing low complexity regions. The lack of a fixed structure and exposition of amino acids on the surface of the protein structure enhances the accessibility to 40 predicted PTM sites, thereby facilitating dehydrin multifunctionality, which is discussed in the present study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.